for GAs to optimize. He concludes that deception is neither necessary nor
sufficient to cause difficulties for GAs, and that its relevance to the study
of GAs remains to be demonstrated.

There is nothing to indicate that the features listed above harm search
performance of GAs; they only demonstrate the danger of drawing con-
clusions about the expected behavior of GAs from the static average fit-
nesses of schemas. Instead, a more dynamic approach is needed that takes
into account the biases introduced by selection at each generation. Such
approaches are described in the next several sections.

4.2 ROYAL ROADS
Royal Road Functions

The Schema Theorem, by itself, addresses the positive effects of selec-
tion (allocating increasing samples of schemas with observed high perfor-
mance) but only the negative aspects of crossover—that is, the extent to
which it disrupts schemas. It does not address the question of how cross-
over works to recombine highly fit schemas, even though this is seen by
many as the major source of the search power of genetic algorithms. The
Building Block Hypothesis states that crossover combines short, observed
high-performance schemas into increasingly fit candidate solutions, but
does not give any detailed description of how this combination occurs.

To investigate schema processing and recombination in more detail,
Stephanie Forrest, John Holland, and [designed a class of fitness land-
scapes, called Royal Road functions, that were meant to capture the
essence of building blocks in an idealized form (Mitchell, Forrest, and
Holland 1992; Forrest and Mitchell 1993b; Mitchell, Holland, and Forrest
1994).

The Building Block Hypothesis suggests two features of fitness land-
scapes that are particularly relevant to genetic algorithms: the presence
of short, low-order, highly fit schemas; and the presence of intermediate
“stepping stones” —intermediate-order higher-fitness schemas that result
from combinations of the lower-order schemas and that, in turn, can com-
bine to create even higher-fitness schemas.

A fitness function (Royal Road R1) that explicitly contains these features
is illustrated in figure 4.1. Ry is defined using a list of schemas s;. Each s;
is given with a coefficient ¢;. The fitness R1(x) of a bit string v is defined
as

1 ifxes;

Ri(xy) = ‘,'5(' X, \’hereﬁi.(x =
1) ZC () ¥) 0 otherwise.

For example, if x is an instance of exactly two of the order-8 schemas,
Ri(x) = 16. Likewise, Ry(111---1) = 64.

Theoretical Foundations of Genetic Algorithms

51 = 11]]1111‘***#‘» e d g ¥ * +; c1=38

1
$3 = O[]] P rernnnn R 0 = 8
-“3 = ****!—%’éﬁ****ii‘nl] I I ‘”]1 * % * ; (3 foaad S
Sq = OO ann] 11111117 FA R 0y = 8
§5 = FRERER ettt 11111111* g S C5 = 8
S() — x-*x—x»a(-m(-x»x-x-***:w»:x-*u»rn(»t:(-rl»nex(n(-xt-(-:e:(-x—:(ne*é%l1]1‘111] **X‘***#******:ﬂé*; C6 - 8
7 = FREOBEt AR 3 11111111 ¥ ey = 8
sg = HARRAN AN e g 1]1]1]]1, cg = 8

Sop,‘—‘lllllllllllllllﬂ11111111HHH111]11]]1111111]11111111111]11111

Figure 41 An optimal string broken up into eight building blocks. The function Ri(x)
(where x is a bit string) is computed by summing the coefficients ¢, corresponding to each
of the given schemas of which x is an instance. For example, Ry(1111111100...0) = 8, and
Ry(1111111100. .. 011111111) = 16. Here ¢ = order(s).

Given the Building Block Hypothesis, one might expect that the
building-block structure of R; will la y outa “royal road” for the GA to fol-
low to the optimal string. One might also expect that the GA will outper-
form simple hill-climbing schemes, since a large number of bit positions
must be optimized simultaneously in order to move from an instance of
a lower-order schema (e.g., 11111111 # %- - -) to an instance of a higher-
order intermediate schema (g, TITTTTIT # # 4 s s 11111117 s 5 - - -),
However, as will be described below, these expectations were overturned.

Experimental Results

We ran a genetic algorithm on R; with a population size of 128, and with
the initial population generated at random. We used a simple GA with
one modification: “sigma truncation” selection was used instead of pro-
portional selection to assign the expected number of offspring to each in-
dividual. In our scheme, each individual i’s expected number of offspring
is

1+ (F;, — F)/20.

where F; is i’s fitness, F is the mean fitness of the population, and o is
the standard deviation of the fitnesses in the population. The number of
expected offspring of any string was cut off at 1.5—if the above formula
gave a higher value, the value was reset to 1.5. This is a strict cutoff, since
it implies that most individuals will reproduce only 0, 1, or 2 times. The
effect of this selection scheme is to slow down convergence by restricting
the effect that a single individual can have on the population, regardless
of how much fitter it is than the rest of the population. The single-point
crossover rate was (0.7 per pair of parents and the bitwise mutation rate
was 0.005.

We compared the GA’s performance on Ry to those of three different
iterated hill-climbing methods:

Chapter 4

129

Steepest-ascent hill climbing (SAHC)
1. Choose a string at random. Call this string current-hitltop.

2. Going from left to right, systematically flip each bit in the string, one at
a time, recording the fitnesses of the resulting one-bit mutants.

3. If any of the resulting one-bit mutants give a fitness increase, then set
current-hilltop to the one-bit mutant giving the highest fitness increase.
(Ties are decided at random.)

4. If there is no fitness increase, then save current-hilltop and go to step 1.
Otherwise, go to step 2 with the new current-lilltop.

5. When a set number of function evaluations has been performed (here,
each bit flip in step 2 is followed by a function evaluation), return the
highest hilltop that was found.

Next-ascent hill climbing (NAHC)
1. Choose a string at random. Call this string current-hilltop.

2. Fori from 1 to / (where / is the length of the string), flip bit i; if this
results in a fitness increase, keep the new string, otherwise flip bit i back.
As soon as a fitness increase is found, set current-hilltop to that increased-
fitness string without evaluating any more bit flips of the original string.
Go to step 2 with the new current-hilltop, but continue mutating the new
string starting immediately after the bit position at which the previous
fitness increase was found.

3. If no increases in fitness were found, save current-hilltop and o to
step 1.

4. When a set number of function evaluations has been performed, return
the highest hilltop that was found.

Random-mutation hill climbing (RMHC)
1. Choose a string at random. Call this string best-coaluated.

2. Choose a locus at random to flip. If the flip leads to an equal or higher
fitness, then set best-eonluated to the resulting string.
3. Go to step 2 until an optimum string has been found or until a maxi-
mum number of evaluations have been performed.

4. Return the current value of best-cvaluated.

(This is similar to a zero-temperature Metropolis method.)

We performed 200 runs of each algorithm, each run starting with a dif-
ferent random-number seed. In each run the algorithm was allowed to
continue until the optimum string was discovered, and the total num-
ber of function evaluations performed was recorded. The mean and the
median number of function evaluations to find the optimum string are

Theoretical Foundations of Genetic Algorithuns

130

Table 4.1 Mean and median number of function evaluations to find the optimum string
over 200 runs of the GA and of various hill-climbing algorithms on R;. The standard error

(o /v number of runs) is given in parentheses.

200 runs GA SAHC NAHC RMHC
Mean 61,334 (2304) > 256,000 (0) > 256,000 (0) 6179 (186)
Median 54,208 > 256,000 > 256,000 5775

given in table 4.1. We compare the mean and the median number of func-
tion evaluations to find the optimum string rather than mean and median
absolute run time, because in almost all GA applications (e.g., evolving
neural-network architectures) the time to perform a function evaluation
vastly exceeds the time required to execute other parts of the algorithm.
For this reason, we consider all parts of the algorithm other than the func-
tion evaluations to take negligible time.

The results of SAHC and NAHC were as expected—whereas the GA
found the optimum on R; in an average of 61,334 function evaluations,
neither SAHC nor NAHC ever found the optimum within the maximum
of 256,000 function evaluations. However, RMHC found the optimum on
Ry in an average of 6179 function evaluations—nearly a factor of 10 faster
than the GA. This striking difference on landscapes originally designed to
be “royal roads” for the GA underscores the need for a rigorous answer
to the question posed earlier: “Under what conditions will a genetic algo-
rithm outperform other search algorithms, such as hill climbing?”

Analysis of Random-Mutation Hill Climbing

To begin to answer this question, we analyzed the RMHC algorithm with
respect to Ry. (Our analysis is similar to that given for a similar problem
on page 210 of Feller 1968.) Suppose the fitness function consists of N
adjacent blocks of K ones each (in Ry, N =8 and K =8). What is the
expected time (number of function evaluations), £(K, N), for RMHC to
find the optimum string of all ones?

Let £(K. 1) be the expected time to find a single block of K ones. Once it
has been found, the time to discover a second block is longer, since some
fraction of the function evaluations will be “wasted” on testing mutations
inside the first block. These mutations will never lead to a higher or equal
fitness, since once a first block is already set to all ones, any mutation to
those bits will decrease the fitness. The proportion of nonwasted mutations
is (KN — K)/KN; this is the proportion of mutations that occur in the
KN - K positions outside the first block. The expected time £(K.2) to
find a second block is

E(K,2)=EK. D)+ EK. DIKN/KN - K)]
=EK. D) +EK. DNJ(N = 1),

Chapter 4

(If the algorithm spends only 1/m of its time in useful mutations, it wil}
require /1 times as long to accomplish what it could if no mutations were
wasted.) Similarly,

E(K,3)=E(K.2) +EK.T)(N/(N - 2)),

and so on. Continuing in this manner, we derive an expression for the
total expected time:

N N
= 1 B § P K, 1
EK,N)=EK. 1)+ EK)N_l +&()N_(N_”
=E(K.)N 1+1+l+ +]) (4.6)
- ’ 23 N/

(The actual value is a bit larger, since £(K, 1) is the expected time to the
first block, whereas & (K, N) depends on the worst time for the N blocks
(Richard Palmer, personal communication).) By a well-known identity,
the right side of equation 4.6 can be written as £(K, 1)N(InN + y), where
InN is the natural logarithm of N and y ~0.5772 is Euler’s constant.

Now we only need to find £(X. 1). A Markov-chain analysis (not given
here) yields £(k. 1) slightly larger than 2%, converging slowly to 2% from
above as K — oc (Richard Palmer, personal communication). For exam-
ple, for K =8, £(K. 1)=3012.For K =8, N = 8, the value of equation 4.6
Is 6549. When we ran RM HC on Ry function 200 times, the average num-
ber of function evaluations to the optimum was 6179, which agrees rea-
sonably well with the expected value.

Hitchhiking in the Genetic Algorithm

What caused our GA to perform so badly on R relative to RM HC? One
reason was “hitchhiking”: once an instance of a higher-order schema is
discovered, its high fitness allows the schema to spread quickly in the
population, with zeros in other positions in the string hitchhiking along
with the ones in the schema’s defined positions. This slows the discovery
of schemas in the other positions, especially those that are close to the
highly fit schema’s defined positions. In short, hitchhiking seriously limits
the implicit parallelism of the GA by restricting the schemas sampled at
certain loci.

The effects of hitchhiking are strikingly illustrated in figure 4.2. The
percentage of the population that is an instance of si is plotted versus gen-
eration for sy—sg for a typical run of the GA on R;. On this run the schemas
52, 54, and s5 each had two instances in the initial population; none of the
other five schemas was present initially. These schemas confer high fit-
ness on their instances, and, as can be seen in figure 4.2, the number of
instances grows very quickly. However, the original instances of s» and Sy
had a number of zeros in the +3 loci, and these zeros tended to get passed
on to the offspring of instances of s2and sy along with the desired biocks

Theoretical Foundations of Genetic Algorithms

3%

of ones. (The most likely positions for hitchhikers are those close to the
highly fit schema’s defined positions, since they are less likely to be sepa-
rated from the schema’s defined positions under crossover.)

These hitchhikers prevented independent sampling in the 53 partition;
instead, most samples (strings) contained the hitchhikers. As figure 4.2
shows, an instance of s3 was discovered early in the run and was followed
by a modest increase in number of instances. However, zeros hitchhik-
ing on instances of s, and sy then quickly drowned out the instances of $3.
The very fast increase in strings containing these hitchhikers presumably
slowed the rediscovery of s3; even when it was rediscovered, its instances
again were drowned out by the instances of s, and s4 that contained the
hitchhikers. The same problem, to a less dramatic degree, is seen for s;
and sg. The effectiveness of crossover in combining building blocks is lim-
ited by early convergence to the wrong schemas in a number of partitions.
This seems to be one of the major reasons for the GA’s poor performance
on Rj relative to RMHC.

We observed similar effects in several variations of our original GA.
Hitchhiking in GAs (which can cause serious bottlenecks) should not be
too surprising: such effects are seen in real population genetics. Hitch-
hiking in GAs (also called “spurious correlation”) has previously been
discussed by Schraudolph ard Belew (1992), Das and Whitley (1991), and
Schaffer, Eshelman, and Offutt (1991), among others.

An Idealized Genetic Algorithm

Why would we ever expect a GA to outperform RMHC on a landscape
like Ry? In principle, because of implicit parallelism and crossover. If im-
plicit parallelism works correctly on &), then cach of the schemas compet-
ing in the relevant partitions in Ry should have a reasonable probability
of receiving some samples at each generation—in particular, the schemas
with eight adjacent ones in the defining bits should have a reasonable
probability of receiving some samples. This amounts to saying that the
Sampling in each schema region in Ry has to be reasonably independent
of the sampling in other, nonoverlapping schema regions. In our GA this
was being prevented by hitchhiking—in the run represented in figure 4.2,
the samples in the s3 region were not independent of those in the s> and
¥y regions.

In RMHC the successive strings examined produce far from indeper:-
dent samples in each schema region: each string differs from the previous
string in only one bit. However, it is the constant, systematic exploration,
bit by bit, never losing what has been found, that gives RMHC the edge
over our GA.

Under a GA, if each partition were sampled independently and the
best schema in each partition tended to be selected—most likely on differ-

Chapter 4

1 100, —
] AN T _\\/\\\\/,\/\“\
80 - 0 / -
3 i |
Z f /
2 60 i 60 i
= i /
5 | /
,;3 40 [40 /I
o, ; /
20 i 20 /
/ schema | / schema 2
0 0
4] 50 100 150 200 250 0 S0 100 150 200 330
100 10 o
P —
- /\\/ /\/\/
80 - 80 -
g /
= 60 o0t |
; H
5 0 10 /
o
20 2()/
Ve schema 3) schema 4
[§] 2 ¢
4] 50 100 130 200 250 0 50 E64] 150 200 250
100 S AN~ 100
S0 - 80 / -
| |
| 60 /
i H
| /
] 0} {
j {
| /
| !
20 h 20 /
/ /
// schen § i schema 6
[- 0 i
4] 30 OO 150 200 250 3} 50 10 150 200 250
100 p S — 100 —
80 | . sop -
; | /
£ | cotf
5 | 40
20 / 20
/
/ schema 7 schema 8
(3 - 0
0 50 10 150 200 250 { 30 1Y) le) 200 250
Generation

Generation

Figure 4.2 Percentage of the population that is an instance of the given schema (1-8) plot-

ted versus generation for a typical GA run on Ry. The data are plotted every 10 generations.

Theoretical Foundations of Genetic Algorithms

2
(]

134

ent strings—then in principle crossover should quickly combine the best
schemas in different partitions to be on the same string. This is basically
the “Static Building Block Hypothesis” described above. The problems
encountered by our GA on Ry illustrate very clearly the kinds of “biased
sampling” problems described by Grefenstette (1991b).

Would an “idealized genetic algorithm” that actually worked according
to the SBBH be faster than RMHC? If so, is there any way we could make
a real genetic algorithm work more like the idealized genetic algorithm?

To answer this, we defined an idealized genetic algorithm (IGA) as fol-
lows (Mitchell, Holland, and Forrest 1994). (Note that there is no popula-
tion here; the IGA works on one string at a time. Nonetheless, it captures
the essential properties of a GA that satisfies the SBBH.)

On each time step, choose a new string at random, with uniform proba-
bility for each bit.

The first time a string is found that contains one or more of the desired
schemas, sequester that string,.

When a string containing one or more not-yet-discovered schemas is
found, instantaneously cross over the new string with the sequestered
string so that the sequestered string contains all the desired schemas that
have been discovered so far. '

How does the IGA capture the essentials of a GA that satisfies the
SBBH? Since each new string is chosen completely independently, all
schemas are sampled independently. Selection is modeled by sequester-
ing strings that contain desired schemas. And crossover is modeled bv
instantaneous crossover between strings containing desired schemas. The
IGA is, of course, unusable in practice, since it requires knowing preciselv
what the desired schemas are, whereas in general (as in the GA and in
RMHC) an algorithm can only measure the fitness of a string and does
not know ahead of time what schemas make for good fitness. But analvz-
ing the IGA can give us a lower bound on the time any GA would take
to find the optimal string of R;. Suppose again that our desired schemas
consist of N blocks of K ones each. What is the expected time (number
of function evaluations) until the sequestered string contains all the de-
sired schemas? (Here one function evaluation corresponds to the choice
of one string.) Solutions have been suggested by Greg Huber and by Alex
Shevoroskin (personal communications), and a detailed solution has been
given by Holland (1993). Here I will sketch Huber's solution.

First consider a single desired schema # (i.e., N = 1). Let p be the prob-
ability of finding # on a random string (here p = 1/2%). Let ¢ be the prob-

Chapter 4

ability of not finding H: ¢ =1 — p. Then the probability 7;(r) that # wil]
be found by time 1 (that is, at any time step between 0 and 1) is

Pi(r)y =1 - Probability that # will not be found by time ¢
=1-q".
Now consider the case with N desired schemas. Let P (1} be the proba-
bility that all N schemas have been found by time #:

Pr(t) = (1 — g")V.

Pn(1) gives the probability that all N schemas will be found sometime in
the interval [0, 1]. However, we do not want Pun(t); we want the expected
time to find all N schemas. Thus, we need the probability Py(r) that the
last of the N desired schemas will be fourd at exactly time 7. This is
equivalent to the probability that the last schema will not be found by time
t — 1 but will be found by time r:

PN(’) :7)1\"([) _I/DN(" - 1)
— (1 _ql)N _ (1 - q!'l)N.

To get the expected time £y from this probability, we sum over ¢ times
the probability:

e
En = Zf Py (1)
=]

o0
— Zl, ((1 _(/.’)/\ . (1 . qlml)l\")‘
r=1

The expression (1 - ¢")" ~ (1 — ¢'~")¥ can be expanded in powers of ¢
via the binomial théorem and becomes

) G=)]-16) G))
AG G =)= [0 -]

(N is arbitrarily assumed to be even; hence the minus sign before the last
term.)

Now this entire expression must be multiplied by 1 and summed from
1 to oc. We can split this infinite sum into the sum of N infinite sums, one
from each of the N terms in the expression above. The infinite sum over
the first term is

Theoretical Foundations of Genetic Algorithms

g 4 (___‘Z___) (using a well-known identity
for0<g <1)

)G
)G9
G -edgorrere
-
)G

Similarly, the infinite sum over the nth term of the sum can be shown to
be

()=
n/1—qgn

Recall that ¢ =1 — p, and p = /2% If we substitute 1 — p for ¢ and
assume that p is small so that ¢" = (1 = p)" =1 — np, we obtain the fol-
lowing approximation:

Ele[(_[:_)_@l@ &] (4.7)

pl 1 2 3 N

For N =8, K = 8 the approximation gives an expected time of approxi-
mately 696, which is the exact result we obtained as the mean over 200
runs of a simulation of the IGA (Mitchell, Holland, and Forrest 1994). (The
standard error was 19.7.)

The sum in the brackets in equation 4.7 can be evaluated using the fol-
lowing identity derived from the binomial thcorem and from integrating
1+ 0)V:

N N
NY x" 1
> ()5 =2 ey -1
i n n
n=1 =1
Let x = —1. Then we can simplify equation 1.7 as follows:

Chapter 4

~)

12 n

n=1
1
x —(InN + y)
P

=2K(nN +)

Setting aside the details of this analysis, the majdr point is that the IGA
gives an expected time that is on the order of 25 InN, whereas RMHC
gives an expected time that is on the order of 2K N InN—a factor of N
slower. This kind of analysis can help us understand how and when the
GA will outperform hill climbing.

What makes the IGA faster than RMHC? To recap, the IGA perfectly
implements implicit parallelism: each new string is completely indepen-
dent of the previous one, so new samples are given independently to
each schema region. In contrast, RMHC moves in the space of strings by
single-bit.mutations from an original string, so each new sample has all
but one of the same bits as the previous sample. Thus, each new string
gives a new sample to only one schema region. The IGA spends more
time than RMHC constructing new samples; however, since we are count-
ing only function evaluations, we ignore the construction time. The IGA
“cheats” on each function evaluation, since it knows exactly what the de-
sired schemas are, but in this way it gives a lower bound on the number
of function evaluations that the GA will need.

Independent sampling allows for a speedup in the IGA in two ways:
it allows for the possibility that multiple schemas will appear simultane-
ously on a given sample, and it means that there are no wasted samples
as there are in RMHC (i.e., mutations in blocks that have already been set
correctly). Although the comparison we have made is with RMHC, the
IGA will also be significantly faster on Ry (and similar landscapes) than
any hill-climbing method that works by mutating single bits (or a small
number of bits) to obtain new samples.

The hitchhiking effects described earlier also result in a loss of inde-
pendent samples for the GA. The goal is to have the GA, as much as
possible, approximate the IGA. Of course, the IGA works because it ex-
plicitly knows what the desired schemas are; the GA does not have this
information and can only estimate what the desired schemas are by an
implicit sampling procedure. But it is possible for the GA to approximate
a number of the features of the IGA:

Theoretical Foundations of Genetic Aleorithms
O

(%)

o

Independent samples The population has to be large enough, the selec-
tion process has to be slow enough, and the mutation rate has to be suffi-
ciently high to make sure that no single locus is fixed at a single value in
every string in the population, or even in a large majority of strings.

Sequestering desired schemas Selection has to be strong enough to pre-
serve desired schemas that have been discovered, but it also has to be
slow enough (or, equivalently, the relative fitness of the nonoverlapping
desirable schemas has to be small enough) to prevent significant hitchhik-
ing on some highly fit schemas, which can crowd out desired schemas in
other parts of the string.

Instantaneous crossover The crossover rate has to be such that the time
for a crossover that combines two desired schemas to occur is small with
respect to the discovery time for the desired schemas.

Speedup over RMHC The string has to be long enough to make the fac-
tor of N speedup significant.

These mechanisms are not all mutually compatible (e.g., high mutation
works against sequestering schemas), and thus they must be carefully
balanced against one another. These balances are discussed in Holland
1993, and work on using such analyses to improve the GA is reported in
Mitchell, Holland, and Forrest 1994,

43 EXACT MATHEMATICAL MODELS OF SIMPLE
GENETIC ALGORITHMS

The theory of schemas makes predictions about the expected change in
frequencies of schemas from one generation to the next, but it does not
directly make predictions concerning the population composition, the
speed of population convergence, or the distribution of fitnesses in the
population over time. As a first step in obtaining a more detailed under-
standing of and making more detailed predictions about the behavior of
GAs, several researchers have constructed “exact” mathematical mod-
els of simple GAs (see, e.g., Goldberg 1987; Goldberg and Segrest 1987;
Davis and Principe 1991; Vose and Liepins 1991; Nix and Vose 1991; Horn
1993; Vose 1993; Whitley 1993a). These exact models capture every de-
tail of the simple GA in mathematical operators; thus, once the model
15 constructed, it is possible to prove theorems about certain interesting
properties of these operators. In this section I will sketch the model devel-
oped by Vose and Liepins (1991) and summarize extensions made by Nix
and Vose (1991) and by Vose (1993).

Chapter 4

